Adventage of mesenchymal stem cells (MSC) expansion directly from purified bone marrow CD105+ and CD271+ cells.
نویسندگان
چکیده
UNLABELLED Mesenchymal Stem Cells (MSC) are employed in gene and cellular therapies. Routinely MSC are isolated from bone marrow mononuclear cells (MNC) by plastic adherence. Here we compared new isolation strategies of bone marrow MSC including immunodepletion of hematopoietic cells and immunomagnetic isolation of CD105+ and CD271+ populations. Four fractions were obtained: MNC MSC, RosetteSep-isolated MSC, CD105+ and CD271+ sorted MSC. We evaluated i) number of CFU-F colonies, ii) cell phenotype, iii) in vitro differentiation of expanded cells and iv) expression of osteo/adipogenesis related genes. RESULTS Average number of day 9 CFU-F colonies was the highest for CD271 positive fraction. Real-Time PCR analysis revealed expression of RUNX2, PPARgamma and N-cadherin in isolated cells, particularly high in CD271+ cells. Expression of CD105, CD166, CD44, CD73 antigens was comparable for all expanded populations (over 90%). We observed various levels of hematopoietic contamination with the highest numbers of CD45+ cells in MNC-MSC fraction and the lowest in CD105+ and CD271+ fractions. Cells of all the fractions were CD34 antigen negative. Expanded CD105 and CD271 populations showed higher level of RUNX2, osteocalcin, PTHR, leptin, PPARgamma2 and aggrecan1 genes except for alpha1 collagen. After osteogenic differentiation CD105+ and CD271+ populations showed lower expression of RUNX, PPARgamma2 and also lower expression of osteocalcin and PTHR than MNC, with comparable alpha1-collagen expression. Chondrogenic and adipogenic gene expression was higher in MNC. More clonogenic CD105+ and particularly CD271+ cells, which seem to be the most homogenous fractions based on Real-Time PCR and immunostaining data, are better suited for MSC expansion.
منابع مشابه
Comparison of Characteristics of Human Amniotic Membrane and Human Adipose Tissue Derived Mesenchymal Stem Cells
BACKGROUND Mesenchymal stem cells (MSCs) are ideal candidates for treatment of diseases. Amniotic membranes are an inexpensive source of MSCs (AM-MSC) without any donor site morbidity in cell therapy. Adipose tissue derived stem cells (ASCs) are also suitable cells for cell therapy. There is discrepancy in CD271 expression among MSCs from different sources. In this study, the characteristics...
متن کاملEx vivo Expansion and Differentiation of Mesenchymal Stem Cells from Goat Bone Marrow
Objective(s) Mesenchymal stem cells (MSCs) from large animals as goat which is genetically more closely related to human have rarely been gained attentions. The present study tried to isolate and characterize MSCs from goat bone marrow. Materials and Methods Fibroblastic cells appeared in goat marrow cell culture were expanded through several subcultures. Passaged-3 cells were then different...
متن کاملHuman Mesenchymal Stem Cells and Their, Clinical Aapplication
There are two main categories for stem cells a cording to their origin: Embryonic Stem Cells and Adult Stem Cell. Mesenchymal stem cell, supporting hematopoetic stem cells in bone marrow, can regenerate tissues such as bone, cartilage, muscle, tendon and fatty tissue. These cells were recognized for the first time by Friedenstein and Petrokova who could isolate theme from rat bone marrow.Mesenc...
متن کاملDifferentiation Potential and Culture Requirements of Mesenchymal Stem Cells from Ovine Bone Marrow for Tissue Regeneration Applications
Objectives- To isolate, culture-expand and differentiate mesenchymal stem cells from ovine bone marrow and determine their culture requirements for high expansion rate. Design- Experimental study. Animals- Five Shal sheep. Procedures- In this study, ovine marrow cells were plated and culture expanded through 3 successive subcultures. The resultant cells were then plated at differentiating condi...
متن کاملMild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells
Objective(s): Cord blood (CB) is known as a valuable source of hematopoietic stem cells (HSC). Identifying strategies that enhance expansion and maintain engraftment and homing capacity of HSCs can improve transplant efficiency. In this study, we examined different culture conditions on ex vivo expansion and homing capacity of CB-HSCs. Materials and Methods: In this study, 4-5 different units o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Folia histochemica et cytobiologica
دوره 46 3 شماره
صفحات -
تاریخ انتشار 2008